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The angular momentum carried by a monochromatic optical field is separated into an orbital and a spin part
beyond the paraxial approximation. These quantities have been distinguished on the grounds of the different
mechanical effects they produce in transparent and birefringent media endowed with internal degrees of
freedom. The orbital and the spin angular momentum flux densities exhibited are shown to be divergence free
in homogeneous and isotropic media and to give back the correct expressions in the paraxial limit.
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I. INTRODUCTION

The problem of the separation of the angular momentum
of light in its intrinsic (or spin) and orbital parts has drawn
the attention of many scientists in the past[1] and it has
recently received a great deal of interest after the seminal
paper by Allenet al. [2], but some confusion still remains
especially beyond the paraxial optics approximation[3,4].
For further references on this subject, we address the reader
to a recent review[5] and to the clear account by Crichton
and Martson[6] on density of the radiative field. In the
paraxial optics approximation, it is well known that the total
angular momentum of monochromatic light can be decom-
posed uniquely into an orbital and a spin part and that
Laguerre-Gauss modes carry a well defined orbital angular
momentum[2,3]. In particular, the orbital angular momen-
tum carried by a Laguerre-Gaussian beam is connected to its
azimuthal angular dependence expsilfd, and the spin is con-
nected to its polarization ellipticitysz. This was first issued
from the formal analogy between thez components of the
quantum-mechanical operators for the orbital and spin angu-
lar momenta and the two terms that, added together in the
paraxial optics approximation, yield the total angular mo-
mentum per unit energy flux of a monochromatic wave[3].
Beyond the paraxial optics approximation, the total angular
momentum density of the radiative field may be still calcu-
lated and split in its orbital and intrinsic parts[1,3], but the
connection ofl and sz with the orbital angular momentum
and the polarization of the field is lost, in general. The anal-
ogy with quantum mechanics turns out to be useless in this
case, since the quantum operatorsLz andSz, acting on non-
paraxial(near) cylindrically symmetric beams, mix terms de-
pending onl and terms depending onsz, and the total angu-
lar momentum is no longer the sum of such terms only[7].
Very recently, it has been demonstrated that, without resort-
ing to the paraxial optics approximation, the flux of the an-
gular momentum carried by monochromatic beams can be
separated into an orbital and a spin part, which are consid-
ered physically separated on the grounds of the different be-
havior they exhibit in propagating through an element that

imparts on the beam an azimuthal dependence or through a
birefringent plate[8]. Nevertheless, the orbital and spin an-
gular momentum introduced in Ref.[8] come from two den-
sities not obeying separate conservation laws and therefore
are not separately divergence free in a homogeneous, nonab-
sorbing, and isotropic medium as vacuum. Consequently, the
radiative angular momentum fluxes passing through an arbi-
trary closed surface would depend, in general, on the surface,
which is impossible. Separately divergence free expressions
for the orbital and spin angular momentum fluxes are desir-
able to investigate the separation of the total angular momen-
tum flux not only for cylindrically symmetric optical fields
but also for other radiation fields, such as, for example, the
dipole field.

In principle, to separate the total angular momentum of
light into meaningful orbital and spin parts, one should ex-
hibit two quantities that, when added, yield the total angular
momentum and that, in isotropic, nonabsorbing, and homo-
geneous media, are independently conserved.

To our knowledge all the works that appeared on this
matter dealt with electromagnetic fields in transparent isotro-
pic homogeneous media and the two parts of the total radia-
tive angular momentum have been usually singled out on
purely formal grounds. In the present work, we try to sepa-
rate the orbital and the spin part of the total angular momen-
tum carried by a monochromatic optical beam following a
more physical approach, involving the interaction of the
beam with anisotropic and inhomogeneous transparent me-
dia. In fact, the separation into an intrinsic and an orbital part
of the angular momentum of such materials can be unam-
biguously performed. Liquid crystals, for example, are fluids
made up of elongated molecules, whose centers of mass are
randomly disposed. In appropriate temperature ranges, how-
ever, the molecules in each volume elementdV located at a
position r at a timet may assume a common average direc-
tion nsr ,td, called the molecular director. Such materials
have the merit, on the one hand, of being very sensitive to
external optical as well as static magnetic and electrical
fields [9–11] and, on the other hand, of having clearly dis-
tinguishable orbital and intrinsic degrees of freedom. A rota-
tion of the directornsr ,td in the fixed volume elementdV is
associated with the intrinsic(spin) part of the angular mo-
mentum of the material, while a rotational motion of the
center of massr of dV is associated with the orbital part. It
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seems therefore natural to call the orbital and the spin angu-
lar momentum of the optical field the parts of the field pro-
ducing a torque density acting on the fluid elementdV or on
the average orientationnsr ,td of the molecules contained in
dV, respectively. Liquid crystals therefore turn out to be a
very good arena to unambiguously define theL̂ andŜ fluxes.

As a matter of fact, for a long time it has been shown that
the spin angular momentum carried by a circularly polarized
light beam can be transferred to a liquid crystal, putting its
molecules into rotation around the propagation direction
[12–14], as in the celebrated experiment made by Beth in
1936 using a quartz plate[15]. Very recent experiments, be-
sides, proved the existence of a new source of torque acting
onnsr ,td along the beam propagation direction[16–19]. This
new torque cannot be related to the photon spin, since it was
found to be still present when unpolarized light was used
[16,18,20]. Rather, the new torque was found to be strongly
dependent on the shape of the transverse profile of the inci-
dent light beam[16,18]. It was suggested that the origin of
this torque could be retraced back to the orbital rather than
the spin part of the photon angular momentum[18,19]. This
guess was supported by approximate calculations made ei-
ther assimilating the liquid crystal sample to a birefringent
plate with a Gaussian shaped retardation profile in the trans-
verse plane[18] or by exploiting some integral relationships
coming from Noether’s theorems applied to the liquid crystal
free energy functional[19]. Although very approximate, both
approaches lead to the idea that the spin part of the light
angular momentum couples withnsr ,td directly, while the
orbital part couples with the gradients ofnsr ,td. The com-
bined effects due to the spin and the orbital parts of the light
angular momentum are very impressive in liquid crystals,
leading to complex dynamics ofn [18,19] as well as to de-
terministic chaos and on-off rotational intermittence[20].

In the present work, the sources of the optical torques
acting in the liquid crystalline material are retraced back in a
rigorous way to the angular momentum fluxes carried by a
monochromatic radiation in the surrounding medium, that is
supposed to be homogenous and isotropic. The separation of
the rotational motions inside the material and of the torques
they arise from has repercussions on the corresponding
fluxes in the radiation incident from the outside. As we shall
see, although the torque densities are unambiguously deter-
mined, the corresponding flux densities still exhibit some
ambiguity, since they are defined within a “gauge” transfor-
mation [see Eq.(9) below]. It is a remarkable result, how-
ever, that a gauge can be found where the flux densities of
the orbital and spin parts of the optical angular momentum
become both divergence free when a homogeneous and iso-
tropic medium as vacuum is envisaged(the total angular
momentum flux is divergence free in any gauge and in any
medium). As a consequence, when this particular gauge is
chosen, the cycle-averaged orbital and spin angular momenta
of light in vacuum reduce to two independently conserved
quantities. A sideways result of this approach is that the cou-
pling of the orbital part of the light angular momentum with
the gradients ofnsr ,td is not direct, as previously supposed
[16,18–20], but mediated by the rotational motion of the
fluid. In the next section the equations of motion of matter

under the action of forces and momenta generated by elec-
tromagnetic fields are derived in the continuum theory
framework. Internal rotational degrees of freedom of the me-
dium are accounted for. In Sec. III, the flux densities of the
electromagnetic angular momenta are derived for monochro-
matic fields and a separation between the orbital and spin
angular momentum fluxes is proposed. In Sec. IV our defi-
nitions of the orbital and the spin angular momentum fluxes
are applied to the problem of dipole radiation. Finally, in
Sec. V our conclusions are drawn.

II. DYNAMICAL EQUATIONS

We start from the usual equations of motion for the liquid
crystalline fluid and for the directorn:

rv̇ = f = divŝ − gradp, s1ad

rr 3 v̇ = r 3 f = divL̂ − w, s1bd

In 3 n̈ = t = divŜ+ w, s1cd

wherer is the fluid density(assumed to be constant), v is the
velocity of the fluid(flow of the centers of mass ofdV), f is
the force per unit volume acting on the fluid,p is the hydro-
static pressure,I is the momentum of inertia per unit volume
associated to the rotation ofn, t is the torque density acting
on n, and, finallyŝ is the stress tensor andw is the vector
dual to its antisymmetric part, i.e.,wa=eabgsbg. Elasticsed,
electromagneticsemd, and viscoussvd forces contribute, in
general, to the torque densityt=te+tem+tv and to the stress

tensor ŝ=ŝe+ŝem+ŝv. The tensor L̂ is defined asLra

=eabgxbsrg so that Eq.(1b) follows from Eq.(1a). The ten-

sor Ŝ, on its hand, comes from a variational principle based
on a suitable free energy functional from which the torque
densityt and the stress tensorŝ can be also deduced. The

divergence of a tensorT̂ here is defined assdivT̂da=]rTra.
The terms on the left in Eqs.(1) may be unambiguously
interpreted as the densities per unit time of linear momen-
tum, orbital angular momentum, and intrinsic angular mo-
mentum of matter, respectively. The terms on the right of
Eqs. (1) can be consistently interpreted as the densities of
force, orbital torque, and intrinsic torque acting in the bulk of
the medium. Such densities are represented by expressions
that contain the divergences of tensors involving the external
fields and then make evident their relationship with the
fluxes of force and momentum from the outside. It is there-

fore quite natural referring to the tensorsL̂ andŜ in Eqs.(1b)
and (1c) as to the orbital and the intrinsic(spin) angular
momentum flux densities, respectively. On this definition of
fluxes we will return later. In the meantime, let us calculate
the stress tensorŝ, the torque densityt, and the intrinsic

angular momentum flux densityŜ. The elastic and electro-
magnetic contributions can be deduced applying variational
calculus to the free energy functionalF=eVF dV=eVsFe

+FemddV, where as densities of the elastic and electromag-
netic free energy we may take, respectively,
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Fe =
1

2
fk1sdiv nd2 + k2sn · rot nd2 + k3sn 3 rot nd2g, s2d

whereki si =1,2,3d are the elastic constants for splay, twist,
and bend deformations, and

Fem=
1

16p
sB* ·H − D* ·Ed, s3d

where monochromatic optical fields are assumed and the
magnetic and electric inductionsB andD are related to the
corresponding fields byB=m̂H, D= êE, with magnetic and
dielectric tensors related ton by the uniaxial form:m̂=m0
+mann, ê=e0+eann. The constantsm0, e0, ma, ea character-
ize the magnetic and electric response of the material. In
particular,ma andea characterize the material anisotropy and
they vanish in isotropic media. For monochromatic optical
fields,B andH can be related to the spatial derivatives of the
electric field E, using Maxwell’s equation and constitutive
relation

B = − si/k0drotE, H = ĥB, s4d

with k0=v /c, c being the speed of light in vacuum andv the
optical frequency(cgs units are used), and ĥ=m̂−1=h0
+hann. Inserting Eqs.(4) into Eq. (3), the total free energy
densityF=Fe+Fem reduces to a function of the fieldsnsrd,
Esrd, E*srd, and of their spatial derivatives. The field equa-
tions associated to the total free energyF are

h = divp̂ − ] F/] n = lsrdn, s5ad

L = divp̂ − ] F/] E* = 0, s5bd

whereprg=]F /]s]rngd andprg=]F /]s]rEg
* d are the tensors

of the generalized momenta associated to the fieldsn andE* ,
respectively, andlsrd is a Lagrange multiplier accounting for
the constraintn2=1. At steady state(v=0, ṅ=0), Eq. (5a) is
equivalent to Eq.(1c), the sum of the elastic and of the
electromagnetic torque densities being given byte+tem=n
3h. Equation(5b), on the other hand, is equivalent to Max-
well’s equation rotsĥrot Ed=k0

2D. The elastic and electro-
magnetic contributionsŝe and ŝem to the stress tensorsŝ in
Eq. (1a) are given by the opposite of the energy-momentum
tensors associated toFe andFem, respectively, i.e.,

ŝba
e = − pbg]ang + dbaFe, s6ad

ŝba
em= − pbg]aEg

* + dbaFem. s6bd

It can be easily proved that the electromagnetic forcefem

=div ŝem acting on the unit volume has the right form[21]
fa
em=−s1/16pdsEb

* Eg]aebg+Hb
* Hg]ambgd. In the liquid crys-

tal communityh is known as the molecular field. The ex-
plicit expression of the elastic contributions toh can be
found in standard textbooks on the physics of liquid crystals
[see, for example, Ref.[9], Eq. (3.22)]. The electromagnetic
contributiontem to the torque densityt results in the sum of
the optical torqueto=1/s8pdResD* 3Ed and of the mag-
netic torquetmag=1/s8pdResB* 3Hd. At optical frequen-
cies, liquid crystals are nonmagnetic,B and H are parallel,

andtmag vanishes, leaving only the optical torqueto. In the
presence of radiative electromagnetic fields, where the opti-
cal cycle-averaged magnetic and electric energy densities are
equal, the total free energyF takes the same value as its
elastic part only, thus reaching a true minimum at equilib-
rium. The invariance ofF with respect to a rotation of the
coordinate frame may be exploited to split both the elastic
and the electromagnetic torque density into the sum of the
divergence of a tensor and the antisymmetric part of the cor-
responding stress tensor,

th = div Ŝh + wh sh = e,emd. s7d

The identity in Eq.(7) holds true for an arbitrary fieldn and

a field E obeying Maxwell’s equations(5b). The tensorsŜe

and Ŝem can be regarded as the elastic and the electromag-
netic “spin flux densities,” respectively.

The contributionsv of viscous forces to the overall stress
tensor can be deduced on the grounds of phenomenological
considerations and can be found in textbooks on the physics
of liquid crystals[see, for example, Ref.[9], Eqs.(5.27) and
(5.28)]. Adding the electromagnetic field does not changeŝv,
since no entropy source is associated to the optical field,
when light absorption is neglected. In particular, we still
have the useful relationshiptv=wv between the viscous
torque density and the antisymmetric part ofŝv. Comparing
this relationship with Eq.(7), we conclude that no “spin flux
density” is associated to viscous torques. From Eq.(7) and
from the relationtv=wv, we see that the last equality on the
right of Eq.(1c) is a consequence of the rotational invariance
of the total free energy of the system.

III. ANGULAR MOMENTUM FLUXES

Adding Eqs.(1b) and (1c) together yields

rr 3 v̇ + In 3 n̈ = divsL̂ + Ŝd = divĴ, s8d

stating the conservation of the total(orbital + intrinsic) an-

gular momentum of the system. The fluxesL̂ and Ŝ do not
conserve separately, however, because of the presence of the
vectorw in Eqs. (1b) and (1c). The vectorw is to be inter-
preted as an internal torque in the volume elementdV which
couples theL- andS-flux densities. If the total stress tensor

was symmetric, thenw would vanish andL̂ and Ŝ would
exhibit separate conservation laws. The stress tensorsra and
the relatedL- andS-flux densities, however, are determined
up to the following gauge transformations:

sra → sra8 = sra + ]gfgra,

Lra → Lba8 = eabgxbsrg8 ,

Sra → Sra8 = Sra + eabgfrbg, s9d

where fgra=−frga. Equations(1) are invariant under the
transformations (9). The gauge functionfgra may be
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uniquely chosen so to have the components of the spin flux
tensorSra8 arbitrarily fixed. In particular, the gauge may be
fixed so thatSra8 =0. In this gauge we havet=n3h=w,
which means that the torque acting onn is fully determined
by the antisymmetric part of the stress tensor. Moreover, in
the spinless gauge the orbital and the total angular momen-

tum flux densities are the same, i.e.,L̂= Ĵ. This spinless
gauge is commonly exploited in the physics of fluids to sym-
metrize the stress tensor: assuming, in fact, the intrinsic an-
gular momentum to be locally balanced, i.e.,t=0, then, the
antisymmetric part of the stress tensorw turns to be zero,
yielding to a totally symmetric stress tensorŝ. The condition
of balance of the torques acting onn entails that the inertial
term on the left of Eq.(1c) is zero or negligible, as usually
assumed in liquid crystals. The last peculiarity was exploited
by the Harvard group long ago to describe the hydrodynam-
ics of liquid crystals through a symmetric stress tensor in the
small elastic distortion approximation[22]. In block I of
Table I, we have reported the stress tensor, its antisymmetric
part, and the spin flux density tensor in the spinless gauge. In

this gaugeŜ=0, by definition, andt=w. If we further as-
sumet=0, we may retain, in calculating the force densityf,
only the symmetric part of the total stress tensorŝ reported
in the block I of Table I. In particular, in the spinless gauge,
the electromagnetic part of the force densityf reduces to the
divergence of the symmetric part of Maxwell’s stress tensor
ŝM as it holds true in ordinary crystals[23]. Though useful to
simplify some calculations on slightly distorted liquid crys-
tals, the spinless gauge presents some drawbacks: the dy-
namical constraintt=0 (the local balance of the angular mo-
mentum), in fact, is not generally satisfied and, what is
worse, the intrinsic and the orbital parts of the angular mo-
mentum flux in the material mix so as to become unrecog-
nizable. On the contrary, Ericksen’s traditional approach,
which is based on the free energy densities in Eqs.(2) and

(3), keeps the orbital and spin angular momenta separated,
and seems therefore physically more appropriate, though
leading to a nonsymmetric stress tensor[24]. Ericksen’s
stress tensor, its antisymmetric part, and Ericksen’s spin ten-
sor are reported in block II of Table I. It is worth noting that
the definitions of the orbital and spin angular momentum flux
along thez axis for a monochromatic field in vacuum pro-
posed in Ref.[8] can be brought back just to theL33 andS33
elements reported in the block II of Table I. Here we derived
the same flux densities from a more general Lagrangian ap-
proach, exploiting the rotational symmetry of the system.

The main drawback of the electromagnetic flux densitiesL̂em

and Ŝem derived from the Lagrangian in Eq.(3) is that they

are not divergence free even in vacuum(only Ĵem= L̂em

+Ŝem is divergence free in vacuum). Having divergenceless

fluxesL̂em andŜem is desirable to have separate conservation
laws for the orbital and spin angular momenta.

In birefringent media such as liquid crystals, the stress
tensorŝ is not symmetric, in general, even in the spinless
gauge and the internal torquew in Eqs. (1b) and (1c) is
present also in that case. The presence of the internal torque
w is due to the lack of invariance of the total free energyF
of the system under separate rotation of the center of massr
and of the components of the fieldsn andE. However, the
elastic free energy becomes rotationally invariant when all
elastic constantski si =1,2,3d become equal, so we may ex-
pect that the stress tensor will be symmetric in this limit.
Settingki =K in Eq. (2), Fe reduces to

F0 =
K

2
fsdiv nd2 + srot nd2g. s10d

The stress tensorŝ0 derived fromF0 is still nonsymmetric.
However, F0 differs from the free energy densityF1

TABLE I. Stress tensor and intrinsic angular momentum flux in different gauges. The flux of the orbital angular momentum is given by
Lab=ebmnxmsan. The several contributions, for each block, are labeled as S for splay, T for twist, and B for bend, corresponding to the
fundamental elastic distortion in nematic liquid crystals. The label E represents the elastic contribution as a whole and em is for the
electromagnetic contribution. Finally, we posedA=n · rot n; B=n3 rot n.

sab w Sab

I S nahb
S−dabsFS+n ·hSd n3hS 0

T −nbha
T−dabFT n3hT 0

B −nbha
B−k3BaBb n3hB 0

−sna]FB/ ]nb +nb]FB/ ]na
d+dabFB

em 1/16p fsDa
* Eb+Ba

* Hb+c.c.d 1/16p sD* 3E+B* 3H +c.c.d 0

−dabsD* ·E+B* ·Hdg
II S −k1]rnr]bna+dabFS k1rot n div n k1]rnreabgng

T −k2Aeagrnr]bng+dabFT −k2AsB+n div nd k2Asnanb−dabd
B −k3sngBa−naBgd]bng+dabFB −k3hfsn3Bd ·¹ gn−sn3Bddiv njj k3naebgrBgnr

em i /16pk0eagrsHr
*]bEg−c.c.d+dabFem i /16pk0fH*div E−sH* ·¹ dE−c.c.gg i /16pk0s−Hb

* Ea+dabH* ·E−c.c.d
III E −Ks]ang]bng− 1

2dab]gnr]gnrd dk1vS+dk2vT+dk3vB Kebgrng]anr

+dk1sab
S +dk2sab

T +dk3sab
B +dk1Sab

S +dk2Sab
T +dk3Sab

B

em −1/16pk0
2hhos]aEg]bEg

* −]rEr]bEa
* +c.c.d −ho/16pk0

2rot E*div E+c.c. ho/16pk0
2sebgrEg

* ]aEr

−dabfhos]gEr]gEr
* −]rEr]gEg

* d−k0
2D* ·Egj −eabgEg

* ]rErd+c.c.
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=sK /2d]anb]anb by divergence terms only, so thatF0 andF1

are equivalent in the bulk[see Ref.[9], Eq. (3.17)], but the
stress tensorŝ1 derived fromF1 is now symmetric. We may
write the original elastic free energy densityFe as Fe=F0

+F̃e, whereF̃e is obtained fromFe through the formal sub-
stitution ki → ski −Kd /ki si =1,2,3d. By this choice, when all
elastic constants tend to the common valueK (this may be
the case in liquid crystals near the nematic to isotropic tran-
sition), Fe→F0. Using this decomposition and exploiting the
equivalence betweenF0 and F1 we may construct a new
stress tensor that, though nonsymmetric in general, becomes
symmetric in the one elastic constant approximationsdki

→0d. This elastic stress tensor and the corresponding spin
flux are reported in block III of the Table I. A similar argu-
ment can be applied to write, within divergence terms, the

electromagnetic free energy densityFem asFem
1 +F̃em, where

Fem
1 generates a symmetric stress tensor in isotropic and ho-

mogenous media andF̃em represents the contribution from
the optical anisotropy. Because the electromagnetic stress

tensor associated toFem
1 is symmetric andF̃em vanishes in

isotropic media, we obtain a stress tensor that reduces to a
symmetric one in homogeneous isotropic media. This choice
for Fem leads to the quantities listed in the last row of block
III. We notice that, when this gauge is used, the antisymmet-
ric partw of the stress tensor is proportional to divE, which
is zero in homogeneous and isotropic media. The symmetry
of the stress tensor in such media entails that the correspond-

ing flux densitiesL̂ and Ŝ are both divergence free(f andt
are also zero). It is remarkable that there is no gauge function
like fgra in Eqs.(9) settling the crossing between gauges I or
II to the last one. This is not surprising, considering that the
gauge transformations in Eq.(9) are not the most general: we
may still add tosra a divergence freesymmetrictensor. As-
suming now the liquid crystal sample to be immersed in a
homogenous and isotropic medium, Eqs.(1b) and(1c), upon
integration over a regionV with its border]V completely
immersed in the surrounding medium, assume the form

E
V

rsr 3 v̇d ·udr = r ]Vu · L̂em·u ds−E
V

wem·u dr

−E
V

we ·u dr +E
V

sr 3 fvd ·udr ,

s11ad

E
V

Isn 3 n̈d ·udr = r ]Vu · Ŝem·u ds+E
V

wem·u dr

+E
V

we ·u dr +E
V

tv ·u dr. s11bd

When the quantities defined in block III are used, the internal
torquewe in Eqs. (11) vanishes in the one elastic constant
approximation and the internal torquewem vanishes in homo-
geneous and isotropic media. In deriving Eqs.(11) we as-
sumedv=0 and appropriate anchoring conditions ofn at the
sample walls so to have no surface contribution from the

elastic intrinsic angular momentum fluxŜe. An example of
such anchoring conditions is a nematic film with homeotro-
pic alignment at the walls as used in the experiments
[18–20].

The flux densitiesL̂em and Ŝem in Eqs.(11) are evaluated
in the surrounding isotropic homogeneous medium, where
they are both divergence free. The closed surface]V is there-
fore essentially arbitrary and the surface integrals in Eqs.
(11) can be well identified with the fluxes ofL andScoming
from the external optical field. The two fluxes are physically
discriminated in Eqs.(11) on the grounds of the different

mechanical effects they produce in the medium, so thatL̂em

and Ŝem can be identified as the flux densities of the orbital
and intrinsic angular momentum carried by the optical field
through the surface]V, respectively. We emphasize that the
gauge leading to Eqs.(11) (block III of Table I) has been
selected from the infinite possible ones because it is the only

one leading to angular momentum flux densitiesL̂em andŜem

both conservative in isotropic and homogeneous media. In
the light of such interpretation, Eqs.(11) show how the an-
gular momentum is transferred from the external optical field
to the liquid crystal. In the physics of liquid crystals, how-
ever, the inertial terms on the left of Eqs.(1) and (11) are
usually neglected and the equations are solved with respect
to the viscous torques and forces, that are proportional toṅ,
to the gradients ofṅ, and to the fluid velocityv. In most
cases the fluid motion can be also neglected. Then, setting
v<0 in Eqs.(11) yields to two integral relationships involv-
ing only n and its time and space derivatives. A closer in-

spection shows that Eq.(11a) couplesL̂em to the space de-

rivatives of n, while Eq. (11b) couplesŜem to n itself. All
these features reproduce what was claimed in previous works
where the plane wave approximation was adopted[25] or
where approximate models were proposed to describe the
effects of the orbital angular momentum of light in liquid
crystals in Refs.[18–20].

IV. CASE OF DIPOLE RADIATION

The definitions of the optical fluxesL̂em andŜem given in
the last row of Table I apply beyond the paraxial optics ap-
proximation and, when such approximation is envisaged,
they reduce, in homogenous and isotropic media, to the well-
known expressions used to introduce the Laguerre-Gauss op-
tical beams[3,8]. The relevance of handling divergence free
quantities may be better understood on the grounds of an
example: the dipole radiation. A straightforward calculation
shows that the total angular momentum irradiated per unit
time by a rotating dipole, evaluated with respect to its center
of mass, is[1,8]

J =
ik0

3

3
sp* 3 pd, s12d

and that, according to the definitions in block III of Table I,
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exactly half of it can be attributed to spin and half to the
orbital angular momentum, i.e.,

S= L =
ik0

3

6
sp* 3 pd, s13d

whereJ, L, andS, respectively are the total, the orbital, and
the spin angular momentum vectors irradiated by the dipole
all over the solid angle. This result holds whatever the sur-
face through which the flux is calculated and is in agreement
with the suggestion made in Ref.[6]. If instead the flux
densities reported in block II of Table I were used,L andS
would depend on the closed surface chosen for the integra-
tion. For instance, thez components of the spin and orbital
angular momentum irradiated per unit time through an ellip-
soid with the dipole located at one of its focuses would be, in
this case,

Lz = ik0
3F 1

4e2 −
1

8e3s1 − e2dln
1 + e

1 − e
Gsp* 3 pdz, s14d

and

Sz =
ik0

3

3
sp* 3 pdz − Lz, s15d

which depend on the ellipticitye of the ellipsoid. This result

rules out the possibility of using the fluxesL̂em and Ŝem de-
rived from the Lagrangian in Eq.(3) and proposed in previ-
ous works[8] as representative of the fluxes of angular mo-
mentum radiated by the dipole.

V. CONCLUSIONS

In conclusion, we studied the transfer of angular momen-
tum from a monochromatic optical field to birefringent me-
dium endowed with internal orientational degrees of freedom

as, for example, liquid crystals. We were able to construct

two electromagnetic fluxesL̂em andŜem both conservative in
vacuum(or in homogeneous isotropic media) which couples
with the orbital and the intrinsic part of the angular momen-
tum of matter, respectively(see block III of Table I). We

could therefore identifyL̂em and Ŝem on physical rather than
mathematical grounds as the orbital and intrinsic angular

momentum fluxes carried by the optical field. The fluxesL̂em

and Ŝem reduce to well known expressions in the paraxial
optics approximation. The present theory was carried out re-
taining full Maxwell’s equations for the optical field in mat-
ter and inertial matter terms too. Moreover, no dynamical
assumptions were made as, for example, the local torque
balance as in Ref.[22]. When the inertial terms are neglected
and appropriate approximations are made, our results con-
firm previous models proposed to explain the coupling of

L̂em to the gradients ofnsrd [18–20]. We studied also the
elastic problem in an analogous way and we were able to
introduce a different elastic stress tensor(and associated an-
gular momentum fluxes) which becomes symmetric when all
elastic constants become equal, as it happens near the nem-
atic clearing point. Finally, the drawbacks of other expres-
sions reported sometimes in the literature for the stress tensor
and angular momentum fluxes have been briefly discussed,
exploiting the example of the dipole radiation. In this case
we found that half of the angular momentum radiated by the
dipole is orbital and half is intrinsic, as suggested in Refs.
[1,6].
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