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Light angular momentum flux and forces in birefringent inhomogeneous media
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The angular momentum carried by a monochromatic optical field is separated into an orbital and a spin part
beyond the paraxial approximation. These quantities have been distinguished on the grounds of the different
mechanical effects they produce in transparent and birefringent media endowed with internal degrees of
freedom. The orbital and the spin angular momentum flux densities exhibited are shown to be divergence free
in homogeneous and isotropic media and to give back the correct expressions in the paraxial limit.
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I. INTRODUCTION imparts on the beam an azimuthal dependence or through a
birefringent plate[8]. Nevertheless, the orbital and spin an-
ular momentum introduced in Rg8] come from two den-
sities not obeying separate conservation laws and therefore
re not separately divergence free in a homogeneous, nonab-
orbing, and isotropic medium as vacuum. Consequently, the
radiative angular momentum fluxes passing through an arbi-
trary closed surface would depend, in general, on the surface,
Which is impossible. Separately divergence free expressions
for the orbital and spin angular momentum fluxes are desir-
able to investigate the separation of the total angular momen-

The problem of the separation of the angular momentu
of light in its intrinsic (or spin and orbital parts has drawn
the attention of many scientists in the p&$t and it has
recently received a great deal of interest after the semin
paper by Allenet al. [2], but some confusion still remains

to a recent review5] and to the clear account by Crichton
and Martson[6] on density of the radiative field. In the

paraxial optics approximation, it is we}l k_nown that the total tum flux not only for cylindrically symmetric optical fields
angular momentum of monqchromatu: I|ghF can be decomy 5156 for other radiation fields, such as, for example, the
posed uniquely into an orbital and a spin part and thaHipoIe field

Laguerre-Gauss modes_ carry a well qlefmed orbital angular In principle, to separate the total angular momentum of
momentyn;[tz)s]. Il_n partlculgr, thg ortz)ltal aﬂgu'af mom(;an- Jlight into meaningful orbital and spin parts, one should ex-
tum carried by a Laguerre-Gaussian beam Is connected o igp;; o quantities that, when added, yield the total angular
azimuthal angular dependence €ks), and the spin is con- momentum and that, in isotropic, nonabsorbing, and homo-
nected to its polarization ellipticity,. This was first issued geneous media, are independently conserved.

from the formal analogy between ti'ecomponents of the ™ 14 oyr knowledge all the works that appeared on this
quantum-mechanical operators for the orbital and spin angusaiter dealt with electromagnetic fields in transparent isotro-

lar momenta and the two terms that, added together in thgic homogeneous media and the two parts of the total radia-
paraxial optics approximation, yield the total angular mo-jje angular momentum have been usually singled out on

mentum per unit e_nergy.flux of a monqchromatic W48k urely formal grounds. In the present work, we try to sepa-
Beyond the paraxial optics approximation, the total angulat e the orbital and the spin part of the total angular momen-
momentum density of the radiative field may be still calcu-y,y carried by a monochromatic optical beam following a
lated and split in its orbital and intrinsic par$,3], but the o6 physical approach, involving the interaction of the
connection ofl and o, with the orbital angular momentum heam with anisotropic and inhomogeneous transparent me-
and the polarization of the field is lost, in general. The analyig | fact, the separation into an intrinsic and an orbital part
ogy W|t_h guantum mechanics turns out to be. useless in thigs the angular momentum of such materials can be unam-
case, since the quantum operattsandS,, acting on non- iy ously performed. Liquid crystals, for example, are fluids
para>§|al(neab cylindrically symmetric beams, mix terms de- 1,5 4e up of elongated molecules, whose centers of mass are
pending orl and terms depending an, and the total angu-  anqomiy disposed. In appropriate temperature ranges, how-

lar momentum is no longer the sum of such terms difly  gyer, the molecules in each volume elemé¥tlocated at a
Very recently, it has been demonstrated that, without resortpositionr at a timet may assume a common average direc-

ing to the paraxial optics approximation, the flux of the an-ton n(r ), called the molecular director. Such materials
gular momentum Ca”.'ed by mono_chromat|c _beams can %Eave the merit, on the one hand, of being very sensitive to
separated into an orbital and a spin part, which are consids,;emna optical as well as static magnetic and electrical
ereq physically ggpgrated on th_e grounds of the different be1’|elds [9-17 and, on the other hand, of having clearly dis-
havior they exhibit in propagating through an element that;, g jishable orbital and intrinsic degrees of freedom. A rota-
tion of the directom(r,t) in the fixed volume elemertV is
associated with the intrinsi¢spin) part of the angular mo-
*Electronic address: bruno.piccirillo@na.infn.it mentum of the material, while a rotational motion of the
TElectronic address: enrico.santamato@na.infn.it center of mass of dV is associated with the orbital part. It
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seems therefore natural to call the orbital and the spin angwnder the action of forces and momenta generated by elec-

lar momentum of the optical field the parts of the field pro-tromagnetic fields are derived in the continuum theory

ducing a torque density acting on the fluid elemé¥itor on  framework. Internal rotational degrees of freedom of the me-

the average orientation(r,t) of the molecules contained in dium are accounted for. In Sec. IlI, the flux densities of the

dV, respectively. Liquid crystals therefore turn out to be aelectromagnetic angular momenta are derived for monochro-

very good arena to unambiguously define thendSfluxes.  matic fields and a separation between the orbital and spin
As a matter of fact, for a long time it has been shown thatangular momentum fluxes is proposed. In Sec. IV our defi-

the spin angular momentum carried by a circularly polarizechitions of the orbital and the spin angular momentum fluxes

light beam can be transferred to a liquid crystal, putting itsare applied to the problem of dipole radiation. Finally, in

molecules into rotation around the propagation directionSec. V our conclusions are drawn.

[12-14, as in the celebrated experiment made by Beth in

1936 using a quartz plafd5]. Very recent experiments, be-

sides, proved the existence of a new source of torque acting Il. DYNAMICAL EQUATIONS

onn(r,t) along the beam propagation directidi®—19. This . . -

new torque cannot be related to the photon spin, since it was we ;tart frpm the usual eq_uat|on.s of motion for the liquid

found to be still present when unpolarized light was useacrystalllne fluid and for the directar.

[16,18,2Q. Rather, the new torque was found to be strongly pv =f =dive— gradp, (1a)

dependent on the shape of the transverse profile of the inci-

dent light bean16,1§. It was suggested that the origin of

this torque could be retraced back to the orbital rather than pr X v=rxf=dvL-w, (1b)
the spin part of the photon angular moment[i8,19. This
guess was supported by approximate calculations made ei- In X i = 7= divS+w, (10)

ther assimilating the liquid crystal sample to a birefringent ) ) . )

plate with a Gaussian shaped retardation profile in the trandVherep is the fluid densityassumed to be constant is the
verse pland18] or by exploiting some integral relationships Velocity of the fluid(flow of the centers of mass alV), f is
coming from Noether’s theorems applied to the liquid crystalth® force per unit volume acting on the flujljs the hydro-
free energy functiondl9]. Although very approximate, both Static pressurd, is the momentum of inertia per unit volume
approaches lead to the idea that the spin part of the |ighqlssouated to theArqtatlon of 7 is the torque Qen3|ty acting
angular momentum couples with(r,t) directly, while the 0NN, and, finallyo is the stress tensor avdis the vector
orbital part couples with the gradients ofr,t). The com- dual to its antisymmetric part, i.en,=€,s,05, Elastic(e),
bined effects due to the spin and the orbital parts of the lighElectromagnetidem), and viscousv) forces contribute, in
angular momentum are very impressive in liquid crystalsgeneral, to the torque density 7°+ 7°™+ 7’ and to the stress
leading to complex dynamics of [18,19 as well as to de- tensor 6=0°+c°™+g". The tensorL is defined asL,,
terministic chaos and on-off rotational intermitterj@8]. = €,3,X50,y SO that Eq(1b) follows from Eq.(1a). The ten-

In the present work, the sources of the optical torquessor S on its hand, comes from a variational principle based
acting in the |IC]U|d Crystalline material are retraced back in don a suitable free energy functional from which the torque
rigOfOUﬁ WathO thde_ ?Dgu!artrfromenw”:j.ﬂuxes g@”ie?hb)t/_ajensityf and the stress tensér can be also deduced. The
monochromatic radiation in the surrounding medium, that is;; - ; - LT =
supposed to be homogenous and isotropic. The separationsgna/gr?;rrfse 8; ?htgr}zgizeéz;i)d ?T?gjdb:%:;-r)ﬁbigﬁngsly
the rotational motions inside the material and of the torque?nterpreted as the densities per unit time of linear momen-

s . i o o 1 St o aim, 0l anuiar momertum, and s anguir mo
' mentum of matter, respectively. The terms on the right of

Srheiﬁégltkt'ﬁsggo:?:st(gggﬁ d?ﬂlimgznzrigeinimbE;hc;gﬁligr?]t:é'qs. (1) can be consistently interpreted as the densities of
e . P g fiL - 9 " force, orbital torque, and intrinsic torque acting in the bulk of
ambiguity, since they are defined within a “gauge” transfor-

mation [see Eq(9) below]. It is a remarkable result, how- the medium. Such densities are represented by expressions

ever that a gauge can be found where the flux densities tFat contain the divergences of tensors involving the external
) gaug Flelds and then make evident their relationship with the

the orbital and .spin parts of the optical angular momentu.n}luxes of force and momentum from the outside. It is there-
become both divergence free when a homogeneous and iso- . )

tropic medium as vacuum is envisagétie total angular fOre quite natural referring to the tensdrandSin Egs.(1b)
momentum flux is divergence free in any gauge and in anj@nd (16) as to the orbital and the intrinsiespin) angular
medium). As a consequence, when this particular gauge ignomentum flux densities, respectively. On this definition of
chosen, the cycle-averaged orbital and spin angular momenf/xes we will return later. In the meantime, let us calculate
of light in vacuum reduce to two independently conservedhe stress tensos, the torque densityr, and the intrinsic
guantities. A sideways result of this approach is that the couangular momentum flux densitg. The elastic and electro-
pling of the orbital part of the light angular momentum with magnetic contributions can be deduced applying variational
the gradients oh(r,t) is not direct, as previously supposed calculus to the free energy functiondi=[\F dV=[(F¢
[16,18-20Q, but mediated by the rotational motion of the +F*MdV, where as densities of the elastic and electromag-
fluid. In the next section the equations of motion of matternetic free energy we may take, respectively,
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o 1 o, 5 ) and 7"®vanishes, leaving only the optical torqu2 In the
Fe= E[kl(dlv n)“+ky(n-rotn)“+ks(nXrotn)<], (2)  presence of radiative electromagnetic fields, where the opti-
cal cycle-averaged magnetic and electric energy densities are
wherek; (i=1,2,3 are the elastic constants for splay, twist, equal, the total free energf takes the same value as its

and bend deformations, and elastic part only, thus reaching a true minimum at equilib-
rium. The invariance ofF with respect to a rotation of the

Fem— L(B* ‘H-D"-E), (3)  coordinate frame may be exploited to split both the elastic

167 and the electromagnetic torque density into the sum of the

givergence of a tensor and the antisymmetric part of the cor-

where monochromatic optical fields are assumed and th .
responding stress tensor,

magnetic and electric inductiors and D are related to the
corresponding fields b8 =xH, D=¢E, with magnetic and -
dielect?ic tengors relatgd g by the uniaxial fo?m:,&:,u,o P'=divS+w (h=eem. ()
;;’;La?hne’ Zqz:é);efﬁznar-lrdh eeé?;?ﬁ(t;a?ggbﬁzeﬂ of Etah(e:hﬁ:gfetﬁ;_ \The identity in Eq(7) holds true for an arbitrary field and
particular,u, ande, characterize the material anisotropy anda field E obeying Maxwell's equationgsh). The tensorss®
they vanish in isotropic media. For monochromatic opticaland S$™ can be regarded as the elastic and the electromag-
fields,B andH can be related to the spatial derivatives of thenetic “spin flux densities,” respectively.
electric fieldE, using Maxwell’s equation and constitutive  The contributions® of viscous forces to the overall stress
relation tensor can be deduced on the grounds of phenomenological
. - considerations and can be found in textbooks on the physics
B=-(i/kgrotE, H =178, (4) of liquid crystals[see, for example, Ref9], Eqs.(5.27) arridy
with ko= w/c, c being the speed of light in vacuum andthe  (5.28]. Adding the electromagnetic field does not chaage
optical frequency(cgs units are used and 7=4"1=7, since no entropy source is associated to the optical field,
+,nn. Inserting Eqs(4) into Eq. (3), the total free energy When light absorption is neglected. In particular, we still
density F=F&+F®" reduces to a function of the fieldgr), have the useful relationshig?=w’ between the viscous
E(r), E*(r), and of their spatial derivatives. The field equa- torque density and the antisymmetric partogf Comparing

tions associated to the total free enetgare this relationship with Eq(7), we conclude that no “spin flux
density” is associated to viscous torques. From &g.and
h=divr-=dF/an=\(r)n, (58  from the relations”=w’, we see that the last equality on the
right of Eqg.(1¢) is a consequence of the rotational invariance
A =divp-dFIdE" =0, (5b)  of the total free energy of the system.

wherem,,=dF/d(d,n,) andp,,= aF/a(apE;) are the tensors
of the generalized momenta associated to the fieldsdE",
respectively, and(r) is a Lagrange multiplier accounting for  Aqding Eqs.(1b) and (1¢) together yields
the constrainh®=1. At steady statév =0, h=0), Eq.(5a) is
equivalent to Eq.(1c), the sum of the elastic and of the
electromagnetic torque densities being givenay #*M=n

X h” Equation(5b), on thé o_thze[; h'la'?\d’ '9] eqylvalznt tlo Max- stating the conservation of the tot@rbital + intrinsig an-
well's equation rotzrot E)=kD. e elastic and electro- gular momentum of the system. The fludesand S do not

. SN ) em -~
magnetic con.tr|but|on9- ando [ the stress tensors in conserve separately, however, because of the presence of the
Eq. (13 are given by the opposite of the energy—momentun\/ectorw in Egs.(1b) and(1c). The vectorw is to be inter-

; o ; .
tensors associated & andFe", respectively, i.e., preted as an internal torque in the volume elentBntvhich

IIl. ANGULAR MOMENTUM FLUXES

pr X o +1n X ii = div(L + S = divJ, (8)

0G0 = = Ty, + 85, FS, (6a)  couples the.- _and S-flux densities._ If the t9tal stress tensor
was symmetric, themv would vanish and. and S would
5=~ pp,d E + SgaFe™ (6b) exhibit separate conservation laws. The stress temgpand
a yoaTy (43 "

the related_- and Sflux densities, however, are determined
It can be easily proved that the electromagnetic fdite up to the following gauge transformations:

=div 6™ acting on the unit volume has the right forf@1]

fo"=~(1/16m)(E4E duep, +HsH d,up,). In the liquid crys- o,
tal communityh is known as the molecular field. The ex-

plicit expression of the elastic contributions o can be

-
a ™ Opa = Opat Oyf

found in standard textbooks on the physics of liquid crystals Loa = Lpa™ €apyXpTpy
[see, for example, Ref9], Eq. (3.22]. The electromagnetic
contribution7*™to the torque density results in the sum of Spu— S;m =S, t €apf 0y 9

the optical torquer®=1/(8m)ReD" X E) and of the mag-
netic torque ¥"29=1/(87)Re(B" X H). At optical frequen- where fye=—F,y EQuations(l) are invariant under the
cies, liquid crystals are nonmagnet®,andH are parallel, transformations(9). The gauge functionf,,, may be
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TABLE |. Stress tensor and intrinsic angular momentum flux in different gauges. The flux of the orbital angular momentum is given by
Log=€5,uX.04,- The several contributions, for each block, are labeled as S for splay, T for twist, and B for bend, corresponding to the
fundamental elastic distortion in nematic liquid crystals. The label E represents the elastic contribution as a whole and em is for the
electromagnetic contribution. Finally, we pos&én-rotn; B=nXrot n.

Top w S

| S Noh3=8,5(FS+n-h9) nxhS 0

T —nghl = 8,5F" nxh’ 0

B -ngh2-k3B,Bg nxh® 0

~(n,oFB/ ang+ nBaFB/ana) +8,FB
em 1/16m[(D,Ez+B,Hz+c.c) 1/16m(D" XE+B" X H+c.c) 0
~8,5(D"-E+B"-H)]

I S ~kqd,N,0gNg+ 8o gFS kyrot n div n k1d,N,€qp,M,

T ~KoA€qyoN, 0N+ Oy gF T —k,A(B+n div n) koA(NNg= 8,8)

B —k3(n,B,—N,B,)dpNn, + 5,5F® —kg{[(n X B)-V]n—-(nx B)div n}} kaN,€z,,B,0,

em i/ 167Kg € p(H,05E = C.C) + 5, gF°M i/16mko[H div E-(H"-V)E~c.c]]  i/16mko(~HE,+8,5H"-E~c.c)
1T E ~K(3,N,95n,~3 8,p0,0,00,) Sy w5+ Sk + Skyw® KegypNydal,

+8K T g+ Sy g+ Ko +0Kq S, g+ Sk S] 5+ keSS 5
em  —1/16mk3{76(d.EI6E,~3,E,04E, +C.C) - 70/ 16mkirot E"div E+c.c. 70/ 167K5 (€,,E ,0,E,
= 8,6l 16(0,E 9, E, = 9,E,,0,E ) ~k5D" -E]} ~€45,E,7,E,) +C.C.

uniquely chosen so to have the components of the spin flug3), keeps the orbital and spin angular momenta separated,
tensorS , arbitrarily fixed. In particular, the gauge may be and seems therefore physically more appropriate, though
fixed so thatS ,=0. In this gauge we have=nXxh=w, leading to a nonsymmetric stress teng@d]. Ericksen’s
which means that the torque acting onis fully determined  stress tensor, its antisymmetric part, and Ericksen’s spin ten-
by the antisymmetric part of the stress tensor. Moreover, irsor are reported in block Il of Table I. It is worth noting that
the spinless gauge the orbital and the total angular momerthe definitions of the orbital and spin angular momentum flux
tum flux densities are the same, i.€.=J. This spinless along thez axis for a monochromatic field in vacuum pro-
gauge is commonly exploited in the physics of fluids to sym-Posed in Ref[8] can be brought back just to thes and Sy
metrize the stress tensor: assuming, in fact, the intrinsic arléments reported in the block Il of Table I. Here we derived
gular momentum to be locally balanced, i.50, then, the the same flux densities from a more general Lagrangian ap-
antisymmetric part of the stress tenserturns to be zero, Proach, exploiting the rotational symmetry of the system.
yielding to a totally symmetric stress tensarThe condition  The main drawback of the electromagnetic flux densiti€%

of balance of the torques acting anentails that the inertial gnd ™ derived from the Lagrangian in E) is that they
term on the left of Eq(1c) is zero or negligible, as usually fre not divergence free even in vacuumnly Jem=[ em

assumed in liquid crystals. The last peculiarity was exploite e _ i .
by the Harvard group long ago to describe the hydrodynam? S IS divergence free in vacuymHaving divergenceless

ics of liquid crystals through a symmetric stress tensor in thdluxesL®™ andS°™is desirable to have separate conservation
small elastic distortion approximatiof22]. In block | of  laws for the orbital and spin angular momenta.

Table |, we have reported the stress tensor, its antisymmetric In birefringent media such as liquid crystals, the stress
part, and the spin flux density tensor in the spinless gauge. liensoro is not symmetric, in general, even in the spinless
this gaugeS=0, by definition, andr=w. If we further as- 9auge and the internal torque in Egs. (1b) and (1) is
sumer=0, we may retain, in calculating the force density pr_esent also in that case. The presence of the internal torque
only the symmetric part of the total stress tenéareported W 1S dueé to the lack of invariance of the total free enesgy

in the block | of Table I. In particular, in the spinless gauge,Of the system under separate rotation of the center of mass
the electromagnetic part of the force denditgduces to the @nd Of the components of the fieldsand E. However, the
divergence of the symmetric part of Maxwell's stress tensoplast!c free energy becomes rotationally invariant when all
&M as it holds true in ordinary crystal23]. Though useful to  lastic constantk; (i=1,2,3 become equal, so we may ex-
simplify some calculations on slightly distorted liquid crys- pect' that thg stress tensor will be symmetric in this limit.
tals, the spinless gauge presents some drawbacks: the dyetlingki=K in Eq.(2), Fe reduces to

namical constraint=0 (the local balance of the angular mo-

mentumn), in fa.ct,. is not generglly satisfied and, what is FO:E[(div n)2+ (rot n)2]. (10)
worse, the intrinsic and the orbital parts of the angular mo- 2

mentum flux in the material mix so as to become unrecog-

nizable. On the contrary, Ericksen’s traditional approachThe stress tensa¥#® derived fromF° is still nonsymmetric.
which is based on the free energy densities in Egsand  However, FO differs from the free energy density!
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=(K/2)d,ngd.Ng by divergence terms only, so the? andF*  gjastic intrinsic angular momentum fI.&2. An example of
are equivalent in the bulsee Ref[9], Eq.(3.17)], but the  such anchoring conditions is a nematic film with homeotro-
stress tensod derived fromF* is now symmetric. We may pic alignment at the walls as used in the experiments
write the original elastic free energy densiy as Fé=F° [18-2Q.

+F€, whereF® is obtained fromF® through the formal sub- The flux densitied ®™ and S™in Egs. (11) are evaluated
stitutionk — (ki —K)/k; (i=1,2,3. By this choice, when all in the surrounding isotropic homogeneous medium, where
elastic constants tend to the common valugthis may be  they are both divergence free. The closed surfatis there-
the case in liquid crystals near the nematic to isotropic tranfore essentially arbitrary and the surface integrals in Egs.
sition), F°— F°. Using this decomposition and exploiting the (11) can be well identified with the fluxes &fandS coming
equivalence betweeR® and F! we may construct a new from the external optical field. The two fluxes are physically
stress tensor that, though nonsymmetric in general, becomegscriminated in Eqs(11) on the grounds of the different

symmetric in the one elastic constant approximati@k  echanical effects they produce in the medium, so ERat

—0). This elastlc. stress tensor and the corregpgndlng SPIBhd & can be identified as the flux densities of the orbital
flux are reported in block Il of the Table I. A similar argu-

ment can be applied to write, within divergence terms, th and intrinsic angular momentgm carried by the.optical field
i ’ = ' ethrough the surfaceV, respectively. We emphasize that the

ellectromagnetlc free energy densit§y™ asFg+Fem Where  gauge leading to Eqgl1l) (block Il of Table I) has been

Femgenerates a symmetric stress tensor in isotropic and hQgjected from the infinite possible ones because it is the only

mogenous media anBey, represents the contribution from gne leading to angular momentum flux densiti€® and M

the optical anisotropy. Because the electromagnetic stregspth conservative in isotropic and homogeneous media. In
tensor associated I‘Eém is symmetric and~,,,, vanishes in the light of such interpretation, Eq€ll) show how the an-
isotropic media, we obtain a stress tensor that reduces to gular momentum is transferred from the external optical field
symmetric one in homogeneous isotropic media. This choicéo the liquid crystal. In the physics of liquid crystals, how-
for F€™Mleads to the quantities listed in the last row of block ever, the inertial terms on the left of Eqd) and (11) are

[ll. We notice that, when this gauge is used, the antisymmetusually neglected and the equations are solved with respect
ric partw of the stress tensor is proportional to dty which  to the viscous torques and forces, that are proportional to

is zero in homogeneous and isotropic media. The symmetrio the gradients of, and to the fluid velocity. In most

of the stress tensor in such media entails that the correspondases the fluid motion can be also neglected. Then, setting

ing flux densities. andS are both divergence freé and= ~ v=0 in Egs.(11) yields to two integral relationships involv-
are also zerp It is remarkable that there is no gauge functioning only n and its time and space derivatives. A closer in-
like f,,, in Egs.(9) settling the crossing between gauges | orspection shows that Eql1a couplesL®™ to the space de-

Il to the last one. This is not surprising, considering that theyjyatives of n, while Eq. (11b) couplesS™ to n itself. Al
gauge transformations in E() are not the most general: we these features reproduce what was claimed in previous works
may still add too,, a divergence fresymmetritensor. AS-  \here the plane wave approximation was adof@s| or
suming now the liquid crystal sample to be immersed in ayhere approximate models were proposed to describe the

homogenous and isotropic medium, E(b) and(1c), upon  effects of the orbital angular momentum of light in liquid
integration over a regioV with its borderdV completely  crystals in Refs[18-20.

immersed in the surrounding medium, assume the form

f p(r X v) -udr =P pu-Lem.u ds—f wWe™. U dr IV. CASE OF DIPOLE RADIATION
\Y \Y

The definitions of the optical fluxds®™ and S™ given in
—f we-u dr+f (r X f¥) -udr, the last row of Table | apply beyond the paraxial optics ap-
v v proximation and, when such approximation is envisaged,
(113 they reduce, in homogenous and isotropic media, to the well-
known expressions used to introduce the Laguerre-Gauss op-
tical beamq3,8]. The relevance of handling divergence free
J I(n X A) -udr =gSaVu LMLy ds+J weM. u dr quantities may be better understood on the grounds of an
v v example: the dipole radiation. A straightforward calculation
shows that the total angular momentum irradiated per unit
+f we-u dr +f 7 -udr. (11b time by a rotating dipole, evaluated with respect to its center
\ \ of mass, i91,8]

When the quantities defined in block Il are used, the internal

torquew® in Egs. (11) vanishes in the one elastic constant |k8 .

approximation and the internal torqué™ vanishes in homo- J= ?(p X p), (12)
geneous and isotropic media. In deriving E¢EL) we as-

sumedv =0 and appropriate anchoring conditionsroét the

sample walls so to have no surface contribution from theand that, according to the definitions in block Il of Table I,
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exactly half of it can be attributed to spin and half to theas, for example, liquid crystals. We were able to construct

orbital angular momentum, i.e., two electromagnetic fluxels®™ and ™ both conservative in
iK3 vacuum(or in homogeneous isotropic megliahich couples
S=L= ?O(p* X p), (13)  with the orbital and the intrinsic part of the angular momen-

tum of matter, respectivelysee block Il of Table ). We

wherelJ, L, andS, respectively are the total, the orbital, and could therefore identify:em and S on physical rather than
the spin angular momentum vectors irradiated by the dipolenathematical grounds as the orbital and intrinsic angular

all over the solid angle. This result holds whatever the surmomentum fluxes carried by the optical field. The fluke®
face through which the flux is calculated and is in agreemeny 4 cem raquce to well known expressions in the paraxial

with the suggestion made in Regf6]. If instead the flux : L :
. ) optics approximation. The present theory was carried out re-
densities reported in block Il of Table | were usédandS taining full Maxwell’'s equations for the optical field in mat-

would depend on the closed surface chosen for the integrgz . 5ny jnertial matter terms too. Moreover, no dynamical

tion. For instance, the cqmponents O_f t_he spin and orbita_ll assumptions were made as, for example, the local torque
angular momentum irradiated per unit time through an e"'r_"balance as in Ref22]. When the inertial terms are neglected

sqid with the dipole located at one of its focuses would be, in, - 4 appropriate approximations are made, our results con-
this case, firm previous models proposed to explain the coupling of

Lem to the gradients oh(r) [18-20. We studied also the

elastic problem in an analogous way and we were able to
introduce a different elastic stress tengand associated an-

11 1+el .,
L, =ik} E_@(l_ez)ml_—e (P Xp (14

and gular momentum fluxgsvhich becomes symmetric when alll
i3 elastic constants become equal, as it happens near the nem-
S, = ?O(p* X p),— L, (15)  atic clearing point. Finally, the drawbacks of other expres-

sions reported sometimes in the literature for the stress tensor
which depend on the ellipticitg of the ellipsoid. This result and gngular momentum fluxes have be"jn _brlefly d|§cussed,
rules out the possibility of using the fluxe&™ and M de- exploiting the example of the dipole radiation. In this case
rived from thepLagranS/ian in Ec%S) and proposed in previ- we found that half of the angular momentum radiated by the
ous works[8] as representative of the fluxes of angular mo_dipole is orbital and half is intrinsic, as suggested in Refs.
mentum radiated by the dipole. [1.6]
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